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Abstract
We investigate how martingale techniques can be used to derive information on
the extent of self-averaging of the free energy for some lattice models of finite
random copolymers.

PACS numbers: 82.35.−x, 05.50.+q

Random copolymers are an interesting example of systems with quenched randomness
(Brout 1959). The sequence of n comonomers in the random copolymer is determined
by some random process but this sequence is then fixed in each particular polymer molecule.
The quenched average free energy is the average of the free energies over all such randomly
chosen sequences. One is interested in the extent to which the properties depend on the
particular sequence of comonomers and one expects that thermodynamic properties such as
the free energy will self-average in the infinite n limit. That is, the free energy in this limit will
be equal to the limiting quenched average free energy, for almost all comonomer sequences.

Recently there has been some interest (Chuang et al 2001, Naidenov and Nechaev 2001,
James and Whittington 2002) in the extent of self-averaging at finite n. To what extent does
a property self-average when the copolymer is finite? That is, how narrow is the distribution
at finite n? In this letter we show that this question can be answered, to some extent, using
martingale methods (see, e.g., Karlin and Taylor 1975, Varadhan 2001). The general idea is
to consider the free energy of the finite n system, and to construct a martingale difference
sequence. Provided one can show that the differences are bounded one can then use Azuma’s
inequality (1967) to establish a bound on the rate of convergence.

Here is an informal description of our results. We shall use χ to denote a particular random
sequence of monomers. For a polymer with n monomers, the simplest case has each monomer
randomly chosen to be one of two types, resulting in 2n possibilities. Once such a sequence
of monomers χ is chosen, we define the free energy per site κn(β|χ), obtained by considering
all conformations of an n-site polymer and their associated energies. The conformations do
not depend on χ , but their energies do. For given n and β, the quantity κn(β|χ) is a random
variable. Our main result (equation (17)) is that the tails of this distribution cannot be heavier
than Gaussian with standard deviation O(n−1/2). In particular, let b be any number less than
1/2, and consider the probability that κn(β|χ) differs from its expected value by more than
n−b. Then this probability converges to 0 as n → ∞ (see equation (16)). In contrast, the limit
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self-averaging property (which has been proved for various models in other papers) says that
the random variables κn(β|χ) converge as n → ∞ to a nonrandom limit.

We begin by giving a general description of the approach in the context of random linear
copolymers, modelled by randomly coloured self-avoiding walks on a lattice, and then apply
the idea to obtain bounds on the extent of self-averaging for several specific problems. We also
observe that the same idea can be used to handle problems involving branched copolymers.

Consider the set of n-edge self-avoiding walks on the d-dimensional hypercubic lattice.
Each vertex of the walk can be coloured A or B independently, with a vertex being coloured A

with probability p. We write χi = 1 if the ith vertex is coloured A and χi = 0 if the ith vertex
is coloured B. Given a sequence of colours χ1, χ2, . . . , χn, we associate the ith vertex of each
walk with the colour χi . That is, the colours correspond to the sequence of comonomers in
the copolymer. By convention, the zeroth vertex is uncoloured although this has essentially
no effect on the argument.

Given a sequence of colours χ1, χ2, . . . , χn each n-edge self-avoiding walk ω has an
associated energy H(ω|χ1, χ2, . . . , χn). This energy will of course depend on the model
being considered. The partition function is defined as

Zn(β|χ1, χ2, . . . , χn) =
∑

ω

eβH(ω|χ1,χ2,...,χn) (1)

and the corresponding free energy is

κn(β|χ1, χ2, . . . , χn) = n−1 log Zn(β|χ1, χ2, . . . , χn). (2)

For given β and n, the quantity κn is a function of the n independent random variables
χ1, . . . , χn. It turns out that this allows us to show that the random variable κn is close to its
mean with high probability, and that this can be quantified in the mathematical framework
of martingale theory, as we now explain. For each k = 0, 1, . . . , n, define the conditional
expectation

Mk = E[κn(β|χ1, χ2, . . . , χn)|χ1, χ2, . . . , χk] (3)

which is the conditional expectation of the free energy, given the colours χ1, χ2, . . . , χk.
Observe that Mk is a function of χ1, χ2, . . . , χk and that the conditional expectation (3)
amounts to an integration over the colours χk+1, χk+2, . . . , χn. Note that

M0 = E[κn(β|χ1, χ2, . . . , χn)] (4)

is the quenched average free energy, in which the expectation is taken over all colourings. It
is easy to check that M0,M1, . . . ,Mn is a martingale, i.e. E(Mk|χ1, . . . , χk−1) = Mk−1 for
each k. Define the martingale difference sequence

dk = Mk − Mk−1 (5)

so that
n∑

k=1

dk = (Mn − Mn−1) + (Mn−1 − Mn−2) + · · · + (M1 − M0)

= Mn − M0

= κn(β|χ1, χ2, . . . , χn) − E[κn(β|χ1, χ2, . . . , χn)]. (6)

This is the extent to which the free energy at size n with a particular sequence of colours differs
from the quenched average free energy.

Martingales can be viewed as generalizations of partial sums of independent random
variables. In general, the terms of a martingale difference sequence are not independent, but
they are uncorrelated and have other appealing properties (see, for instance, section 1.6 of
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Hall and Heyde 1980). There is a body of theory that shows that martingales under certain
conditions behave like sums of independent random variables, e.g. they often obey central
limit theorems (Hall and Heyde 1980). We cannot derive central limit theorems in our models,
but we are able to apply other martingale machinery to give Gaussian bounds on the tails of
the distributions. The main technical tool is the following, which is a special case of Azuma’s
inequality (Azuma 1967, Steele 1997).

Proposition 1. Assume that M0, . . . ,Mn is a martingale, and that K is a number (possibly
depending on n) such that

‖dk‖∞ � K (7)

for k = 1, . . . , n. Then for every λ > 0

Pr(|Mn − M0| � λ) � 2e−λ2/2nK2
. (8)

As we show below, in many problems we can take K of the form A/n for some constant A.
Thus if we put λ = Bn−1/2+ε for any positive B and ε we have

Pr(|Mn − M0| � Bn−1/2+ε ) � 2e−(B2/2A2)n2ε

(9)

which goes to zero as n goes to infinity. Indeed, for any ε > 0 and for any B > 0 we can find
an integer N = N(ε,B) such that for n > N the right-hand side of (9) can be made as small
as we wish. Alternatively, we could take λ = t/

√
n, which leads to

Pr(
√

n|Mn − M0| � t) � 2e−t2/2A2
for all t > 0 (10)

which highlights the sub-Gaussian nature of the tails.
The following lemma describes conditions under which the hypotheses of proposition 1

hold in our models. This approach has been used in various contexts (see, for
example, section 1.3 of Steele (1997), section 3 of McDiarmid (1998), equation (1.10) of
Talagrand (1998)).

Lemma 1. Let χ1, . . . , χn be any sequence of random variables. Let Y be any random
variable, and let

Mk = E(Y |χ1, . . . , χk) (k = 0, 1, . . . , n).

(a) It follows that the sequence M0,M1, . . . ,Mn is a martingale.
(b) Assume that χ1, . . . , χn are independent random variables, and that Y is of the form

Y = f (χ1, . . . , χn)

for some deterministic function f that satisfies

|f (x) − f (x ′)| � K (11)

for every two n-component vectors x and x ′ that differ in exactly one component. Then
‖dk‖∞ � K for every k.

For a proof, see for instance section 1.3 of Steele (1997).
We shall apply the above lemma with

f (χ1, . . . , χn) = κn(β|χ1, . . . , χn).

The basic step is to establish inequality (11). We first consider the problem of adsorption of
a random copolymer at an impenetrable surface. We write (x, y, . . . , z) for the coordinates
of a vertex on the d-dimensional hypercubic lattice and (xi, yi, . . . , zi) for the coordinates of
the ith vertex of a self-avoiding walk on this lattice. We fix the zeroth vertex at the origin
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and consider the subset of walks for which zi � 0 for all i � n, so that the walk is confined
to a half-space. For any particular fixed colouring χ ≡ {χ1, χ2, . . . , χn} let cn(vA|χ) be the
number of n-edge self-avoiding walks with colouring χ which have vA vertices coloured A in
the hyperplane z = 0. The partition function with this fixed colouring is

Zn(β|χ) =
∑
vA

cn(vA|χ) eβvA (12)

and the corresponding free energy is

κn(β|χ) = n−1 log Zn(β|χ). (13)

If the colouring χ ′ differs from χ by changing the colour at (say) the kth vertex then

e−|β|Zn(β|χ) � Zn(β|χ ′) � e|β|Zn(β|χ). (14)

Hence

|κn(β|χ) − κn(β|χ ′)| � |β|
n

(15)

which establishes (11) with K = |β|/n. For this problem it is already known
(Orlandini et al 1999) that the free energy self-averages in the infinite n limit, but (15) together
with Azuma’s inequality implies that

Pr(|κn(β|χ) − E[κn(β|χ)]| � Bn−1/2+ε ) � 2e−(B2/2β2)n2ε

(16)

for any positive B and ε, which improves the result given in James and Whittington (2002) for
the extent of self-averaging at finite n. Equation (10) becomes

Pr(
√

n|κn(β|χ) − E[κn(β|χ)]| � t) � 2e−t2/2β2
for all t > 0. (17)

Taking λ = C
√

log n/n in equation (8) gives

Pr

(
|κn(β|χ) − E[κn(β|χ)]| � C

√
log n

n

)
� 2n−(C2/2β2). (18)

When C >
√

2|β|, the series
∑

n n−(C2/2β2) converges. Therefore, the Borel–Cantelli lemma
tells us that

lim sup
n→∞

√
n

log n
|κn(β|χ) − E[κn(β|χ)]| �

√
2|β| (19)

with probability 1.
The same approach works for other random copolymer problems. Consider self-

interacting, randomly coloured self-avoiding polygons where vertices are coloured A or B
independently and where A–A, B–B and A–B nearest neighbour pairs (i.e. contacts) have
different interaction potentials. Suppose k is a vector with elements kAA, kBB, kAB where kAA

is the number of AA contacts in the polygon, etc, and suppose pn(k|χ) is the number of
polygons with colouring χ and contact vector k. The partition function can be written as

Pn(β|χ) =
∑

k

pn(k|χ)eβg(k) (20)

where g(k) is a linear function of the elements of the vector k, and where |g(k)| �
γ (kAA + kBB + kAB) for some fixed finite γ . For this problem the free energy is known
to self-average in the infinite n limit (Janse van Rensburg et al 2001) but nothing is known
about the extent of self-averaging for finite values of n. To use Azuma’s inequality we need
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to establish the bound (11). If χ ′ differs from χ only by the colouring of one vertex, then at
most 2d − 2 contacts can change so g(k) can change by at most 2γ (2d − 2). Hence

|n−1 log Pn(β|χ ′) − n−1 log Pn(β|χ)| � 4βγ (d − 1)/n. (21)

Therefore, inequality (7) is satisfied with K = 4βγ (d − 1)/n and

Pr(|n−1 log Pn(β|χ) − E[n−1 log Pn(β|χ)]| � Bn−1/2+ε ) � 2e−(B2/32β2γ 2(d−1)2)n2ε

(22)

for any positive B and ε. The analogues of (17)–(19) also hold.
We note that a similar argument works for self-interacting randomly coloured self-avoiding

walks, although in this case there is no proof that the limiting quenched average free energy
exists. Nevertheless this method gives a bound on the extent of self-averaging for finite n.

Finally we point out that the same approach works for a model of random copolymer
localization at a surface between two immiscible liquids (Martin et al 2000), for a randomly
coloured lattice tree model of copolymer adsorption (You and Janse van Rensburg 2000) and,
as well, for models of branched copolymer collapse. The method has the advantage that no
concatenation is necessary and the colouring of the vertices can be carried out according to the
underlying graph theoretic structure, so that it does not depend on the particular embedding.
The argument and final result are almost identical to the arguments given above.
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